Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.323
Filtrar
1.
Environ Sci Technol ; 58(15): 6716-6724, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573586

RESUMO

Wildfires in Australia have attracted extensive attention in recent years, especially for the devastating 2019-2020 fire season. Remote forcing, such as those from tropical oceans, plays an important role in driving the abnormal weather conditions associated with wildfires. However, whether high latitude climate change can impact Australian fires is largely unclear. In this study, we reveal a robust relationship between Antarctic sea ice concentration (SIC), primarily over the Amundsen Sea region, with Australian springtime fire activity, by using reanalysis data sets, AMIP simulation results, and a state-of-the-art climate model simulation. Specifically, a diminished Amundsen SIC leads to the formation of a high-pressure system above Australia as a result of the eastward propagation of Rossby waves. Meanwhile, two strengthened meridional cells originating from the tropic and polar regions also enhance subsiding airflow in Australia, resulting in prolonged arid and high-temperature conditions. This mechanism explains about 28% of the variability of Australian fire weather and contributed more than 40% to the 2019 extreme burning event, especially in the eastern hotspots. These findings contribute to our understanding of polar-low latitude climate teleconnection and have important implications for projecting Australian fires as well as the global environment.


Assuntos
Incêndios , Incêndios Florestais , Austrália , Camada de Gelo , Oceanos e Mares
2.
Proc Natl Acad Sci U S A ; 121(17): e2307216121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621126

RESUMO

Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.


Assuntos
Borboletas , Incêndios , Animais , Ecossistema , Solo , Florestas , Árvores , Biodiversidade
3.
Bull Math Biol ; 86(5): 51, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581579

RESUMO

Forest plantations are economically and environmentally relevant, as they play a key role in timber production and carbon capture. It is expected that the future climate change scenario affects forest growth and modify the rotation age for timber production. However, mathematical models on the effect of climate change on the rotation age for timber production remain still limited. We aim to determine the optimal rotation age that maximizes the net economic benefit of timber volume in a negative scenario from the climatic point of view. For this purpose, a bioeconomic optimal control problem was formulated from a system of Ordinary Differential Equations (ODEs) governed by the state variables live biomass volume, intrinsic growth rate, and area affected by fire. Then, four control variables were associated to the system, representing forest management activities, which are felling, thinning, reforestation, and fire prevention. The existence of optimal control solutions was demonstrated, and the solutions of the optimal control problem were also characterized using Pontryagin's Maximum Principle. The solutions of the model were approximated numerically by the Forward-Backward Sweep method. To validate the model, two scenarios were considered: a realistic scenario that represents current forestry activities for the exotic species Pinus radiata D. Don, and a pessimistic scenario, which considers environmental conditions conducive to a higher occurrence of forest fires. The optimal solution that maximizes the net benefit of timber volume consists of a strategy that considers all four control variables simultaneously. For felling and thinning, regardless of the scenario considered, the optimal strategy is to spend on both activities depending on the amount of biomass in the field. Similarly, for reforestation, the optimal strategy is to spend as the forest is harvested. In the case of fire prevention, in the realistic scenario, the optimal strategy consists of reducing the expenses in fire prevention because the incidence of fires is lower, whereas in the pessimistic scenario, the opposite is true. It is concluded that the optimal rotation age that maximizes the net economic benefit of timber volume in P. radiata plantations is 24 and 19 years for the realistic and pessimistic scenarios, respectively. This corroborates that the presence of fires influences the determination of the optimal rotation age, and as a consequence, the net economic benefit.


Assuntos
Incêndios , Florestas , Incêndios/prevenção & controle , Conceitos Matemáticos , Modelos Biológicos
4.
PLoS One ; 19(4): e0299940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38620031

RESUMO

Injecting carbon dioxide is the most effective means of preventing and extinguishing fires in sealing hazardous areas, but the traditional method slowly and remotely injects carbon dioxide gas into the well after gasification on the ground, which is dependent on the complete mine pipe network without cooling effect. To inject liquid directly from the tank with vacuum interlayer and heat insulating powder for rapid inerting and cooling, a new approach using track mobile platform to go deep into the underground mine disaster area is proposed, so the liquid can be delivered to the nozzle at the end of DN40 large diameter pipe, and the continuous gasification jet can be realized. The experimental results show that: (1) The liquid volume in a tank of vacuum degree within 2.0 Pa and 200 mm interlayer reduced no more than 15.5% after 48 days; (2) Taking the pressure in the tank as the power source, because of environmental differences inside and outside the pipe after 100 m pressure holding delivery, the physical form of liquid and gas could be converted instantly; (3) The continuous discharge time without ice blocking for a tank full of 2 m3 liquid was about 10.5 min under 25 L dual mode nitrogen pressurization, which is 1/12 of injection time after ground gasification; (4) Based on the temperature decrease trend measured at different positions, the cooling characteristics on liquid gasification jet path are quantified, and the calculation formula of temperature changing with time on the center line of liquid gasification jet is obtained. Through this new approach, the integration of vacuum insulated storage, safe mobile transportation, and continuous and rapid release with large flow can be achieved for the liquid carbon dioxide.


Assuntos
Dióxido de Carbono , Incêndios , Incêndios/prevenção & controle , Nitrogênio , Temperatura Alta , Temperatura Baixa
6.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474914

RESUMO

Walking speed is a significant aspect of evacuation efficiency, and this speed varies during fire emergencies due to individual physical abilities. However, in evacuations, it is not always possible to keep an upright posture, hence atypical postures, such as stoop walking or crawling, may be required for survival. In this study, a novel 3D passive vision-aided inertial system (3D PVINS) for indoor positioning was used to track the movement of 20 volunteers during an evacuation in a low visibility environment. Participants' walking speeds using trunk flexion, trunk-knee flexion, and upright postures were measured. The investigations were carried out under emergency and non-emergency scenarios in vertical and horizontal directions, respectively. Results show that different moving directions led to a roughly 43.90% speed reduction, while posture accounted for over 17%. Gender, one of the key categories in evacuation models, accounted for less than 10% of the differences in speed. The speeds of participants under emergency scenarios when compared to non-emergency scenarios was also found to increase by 53.92-60% when moving in the horizontal direction, and by about 48.28-50% when moving in the vertical direction and descending downstairs. Our results also support the social force theory of the warming-up period, as well as the effect of panic on the facilitating occupants' moving speed.


Assuntos
Incêndios , Caminhada , Humanos , Postura , Posição Ortostática , Velocidade de Caminhada
7.
Sci Total Environ ; 926: 171985, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537829

RESUMO

The impacts of wildfire on vegetation and soil erosion have been studied for decades aiming to bring back ecosystems after fire perturbance. However, the influence of fires on above and belowground biodiversity remains far less understood. Biodiversity is critical for supporting ecosystem function, and this data scarcity is hampering managers in adopting effective practices for a proper restoration of burned ecosystems. This limitation could be overcome by future research that should focus post-fire diversity of plants and soil biota, by (i) analysing the environmental factors driving post-fire evolutionary trends; (ii) exploring their interrelations across different spatial and temporal scales; (iii) identifying the variability across fires of different severities and frequency; (iv) ascertaining the post-fire response of individual plant species and soil taxa to fire with or without application of post-fire restoration actions.


Assuntos
Ecossistema , Incêndios , Biodiversidade , Plantas , Solo , Biologia
8.
Ying Yong Sheng Tai Xue Bao ; 35(2): 354-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523092

RESUMO

Forest fires have a significant impact on human life, property safety, and ecological environment. Deve-loping high-quality forest fire risk maps is beneficial for preventing forest fires, guiding resource allocation for firefighting, assisting in fire suppression efforts, and supporting decision-making. With a multi-criteria decision analysis (MCDA) method based on geographic information systems (GIS) and literature review, we assessed the main factors influencing the occurrences of forest fires in Youxi County, Fujian Province. We analyzed the importance of each fire risk factor using the analytic network process (ANP) and assigned weights, and evaluated the sub-standard weights using fuzzy logic assessment. Using ArcGIS aggregation functions, we generated a forest fire risk map and validated it with satellite fire points. The results showed that the areas classified as level 4 or higher fire risk accounted for a considerable proportion in Youxi County, and that the central and northern regions were at higher risk. The overall fire risk situation in the county was severe. The fuzzy ANP model demonstrated a high accuracy of 85.8%. The introduction of this novel MCDA method could effectively improve the accuracy of forest fire risk mapping at a small scale, providing a basis for early fire warning and the planning and allocation of firefighting resources.


Assuntos
Lógica Fuzzy , Incêndios Florestais , Humanos , Incêndios/prevenção & controle , Florestas , Sistemas de Informação Geográfica , Árvores , Incêndios Florestais/estatística & dados numéricos
9.
Sci Total Environ ; 925: 171592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479526

RESUMO

Climate and land-use changes are altering fire regimes in many regions around the world. To date, most studies have focused on the effects of altered fire regimes on woody and herbaceous communities, while the mechanisms driving post-fire bryophyte succession remain poorly understood, particularly in Mediterranean-type ecosystems. Here, we examined changes in bryophyte functional composition along a post-fire chronosequence (ranging from 1 to 20+ years) in Pyrenean oak woodlands (northeastern Portugal). To do so, we defined bryophyte functional groups based on seven morphological, reproductive, and life history traits. Then, we fitted linear and structural equation models to disentangle the direct and indirect effects of fire (time since fire and fire intensity), vegetation structure, climate, topography, and edaphic conditions on the abundance of each group. We identified two main functional groups: early colonizers (species with traits associated with strong colonization ability and desiccation tolerance) and perennial stayers (species with high competitive ability, i.e., large perennial mosses). Overall, the abundance of early colonizer species decreased with time since fire and increased with fire intensity, while the opposite was observed for perennial stayers. Thus, successional dynamics reflected a trade-off between species' competitive and colonization abilities, highlighting the role of biotic interactions later in succession. Patterns of functional composition were also consistent with changes in environmental conditions during succession, suggesting that species may experience stressful conditions (i.e., high radiation and low water availability) in early stages of post-fire succession. Our results also indicate that increased fire intensity may alter successional trajectories, leading to long-term changes in bryophyte communities. By understanding the response of bryophyte communities to fire, we were able to identify species with potential use as soil restoration materials.


Assuntos
Briófitas , Incêndios , Ecossistema , Florestas , Clima , Briófitas/fisiologia
10.
PLoS One ; 19(3): e0297309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547131

RESUMO

As the risk of climate change increases, robust fire monitoring methods become critical for fire management purposes. National-scale spatiotemporal patterns of the fires and how they relate to vegetation and environmental conditions are not well understood in Zimbabwe. This paper presents a spatially explicit method combining satellite data and spatial statistics in detecting spatiotemporal patterns of fires in Zimbabwe. The Emerging Hot Spot Analysis method was utilized to detect statistically significant spatiotemporal patterns of fire occurrence between the years 2002 and 2021. Statistical analysis was done to determine the association between the spatiotemporal patterns and some environmental variables such as topography, land cover, land use, ecoregions and precipitation. The highest number of fires occurred in September, coinciding with Zimbabwe's observed fire season. The number of fires significantly varied among seasons, with the hot and dry season (August to October) recording the highest fire counts. Additionally, although June, July and November are not part of the official fire season in Zimbabwe, the fire counts recorded for these months were relatively high. This new information has therefore shown the need for revision of the fire season in Zimbabwe. The northern regions were characterized by persistent, oscillating, diminishing and historical spatiotemporal fire hotspots. Agroecological regions IIa and IIb and the Southern Miombo bushveld ecoregion were the most fire-prone areas. The research findings also revealed new critical information about the spatiotemporal fire patterns in various terrestrial ecoregions, land cover, land use, precipitation and topography and highlighted potential areas for effective fire management strategies.


Assuntos
Incêndios , Zimbábue , Estações do Ano , Mudança Climática , Ecossistema
11.
Ying Yong Sheng Tai Xue Bao ; 35(1): 203-211, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511457

RESUMO

Liangshan Prefecture is one of the three major forest areas in Sichuan Province and one of the three major disaster areas of forest fire. We measured the physicochemical properties and combustion performances of different organs (leaves and branches) of 15 main economic tree species in Liangshan, and analyzed the bioecology characteristics, silviculture characteristics and value characteristics of different tree species. We investigated the fire resistance of different tree species to screen out fire-resistant species suitable for economic forest development in Liangshan Prefecture, and improve the biological fire prevention ability. The seven physicochemical properties and combustion performances indices of 15 tree species showed significant differences. Except for crude ash and lignin, the weights of moisture content, caloric value, ignition point, crude fat, and crude fibre of leaves were higher than those of branches. Crude fibre index of leaves (9.6%) and the crude ash index of branches (9.9%) were the highest weight indices of the two organs, respectively. Based on the fire resistance, we divided all the species into three classes, i.e., class Ⅰ (excellent fire-resistance trees) Juglans regia and Morus alba; class Ⅱ (better fire-resistant trees) Sapium sebiferum, Mangifera indica, Phyllanthus emblica, Eriobotrya japonica, Ligustrum lucidum, Castanea mollissima, and Punica granatum; class Ⅲ (poor fire-resistant trees) Pinus armandii, Illicium simonsii, Morella rubra, Sapindus mukorossi, Olea europaea and Camellia oleifera. J. regia and M. alba had fireproof solid performance and could be used as the preferred species for fireproof economic forest in Liangshan region. It was suggested that to use class Ⅰ to Ⅱ fire-resistant tree species built the main fireproof isolated forest belt, and pay attention to fire prevention after planting class Ⅲ tree species in a large area.


Assuntos
Incêndios , Incêndios Florestais , Árvores , Florestas , China
12.
Sci Total Environ ; 922: 171243, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431164

RESUMO

In addition to fertilisers, plant protection products are essential in today's agricultural production. The increase in the human population leads to the need to optimise agricultural production, with an increasing demand for plant protection products. Historically, there have been serious fires at plant protection product storage facilities with devastating consequences for the environment. For this reason, it is worth investigating what risks arise for people and the environment during a fire at storage sites for these substances. In this article, tests were carried out for three plant protection products containing azoxystrobin as the active substance, in order to investigate the effects of the additives on combustion processes. Tests of combustion parameters were performed using a cone calorimeter. A tube furnace with asphyxiating and irritant gas analysers and gas chromatography with a mass spectrometer were used to analyse the resulting gas products. The Plant Protection Products tested achieved high values for combustion parameters. Analysis of the substances produced during their combustion showed that large amounts of asphyxiating and irritating gases (CO, N2O, NO, SO2, NH3, HCl, CH2O, HCN) were generated.


Assuntos
Incêndios , Gases , Humanos
13.
Fa Yi Xue Za Zhi ; 40(1): 64-69, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500463

RESUMO

Biological evidence is relatively common evidence in criminal cases, and it has strong probative power because it carries DNA information for individual identification. At the scene of fire-related cases, the complex thermal environment, the escape of trapped people, the firefighting and rescue operations, and the deliberate destruction of criminal suspects will all affect the biological evidence in the fire scene. Scholars at home and abroad have explored and studied the effectiveness of biological evidence identification in fire scenes, and found that the blood stains, semen stains, bones, etc. are the main biological evidence which can be easily recovered with DNA in fire scenes. In order to analyze the research status and development trend of biological evidence in fire scenes, this paper systematically sorts out the relevant research, mainly including the soot removal technology, appearance method of typical biological evidence, and possibility of identifying other biological evidence. This paper also prospects the next step of research direction, in order to provide reference for the identification of biological evidence and improve the value of biological evidence in fire scenes.


Assuntos
Manchas de Sangue , Líquidos Corporais , Incêndios , Humanos , Sêmen , DNA/genética
14.
Ying Yong Sheng Tai Xue Bao ; 35(2): 363-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523093

RESUMO

Surface vegetations are one of the key factors affecting the spread of green space fires. To explore the combustibility of commonly used local surface layer herbaceous species in Beijing, and to provide a reference for the construction and management of urban green space, we comprehensively evaluated the combustibility of Carex giraldiana, Carex breviculis, Liriope spicata, Iris lactea, Iris tectorum, and Buffaloe dactyloides, with the entropy weight method and K-mean cluster analysis based on the principal component analysis method. We measured the combustion characteristics indicators (blade ignition point, combustion time and heat release rate), physical and chemical indicators (leaf moisture content and crude fat content), and biological characteristics indicators (blade thickness and unit load) during the key period of fire prevention. The results showed that blade thickness and ignition point got the highest weight and affected the overall combustibility most. Peak heat release rate and ignition time had the lowest weight and minimal impact on the overall combustibility. The combustibility of the six species followed an order of B. dactyloides > C. breviculmis > L. spicata > C. giraldiana > I. lactea > I. tectorum. Results of the clustering analysis showed that the combustion ability of B. dactyloides, C. breviculmis, and L. spicata were in class Ⅰ, with the strongest combustion ability; C. giraldiana was in class Ⅱ; I. lactea and I. tectorum were in class Ⅲ, with the lowest flammability. As widely used surface vegetations, critical attention should be paid on B. dactyloides, C. breviculmis and L. spicata for fire prevention in winter and spring.


Assuntos
Incêndios , Pequim , Temperatura Alta , Folhas de Planta , Estações do Ano
15.
PLoS One ; 19(3): e0300532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527034

RESUMO

INTRODUCTION: Firefighters, compared to other occupational groups, are exposed more frequently in their working environment not only to physical issues, such as musculoskeletal disease, respiratory disease, and burns but also to mental health issues, such as PTSD and depression. Specifically, Korean firefighters experience significantly higher rates of work-related injuries compared to those in other countries. Recent statistics from the Korea National Fire Agency indicate a steady increase in the number of firefighting work-related injuries. However, there is a shortage of measures in place to address these issues. This study aims to investigate the health needs, overall healthcare usage, and unmet needs of firefighters in Korea. We also aim to investigate, through in-depth interviews, perceptions and hindering factors for integrative medicine approaches to fulfilling unmet needs. METHOD: This study was conducted in accordance with the consolidated criteria for reporting qualitative research. Convenience and snowball sampling methods will be used to recruit firefighters to participate in the study, and interviews will be conducted using a semi-structured interview guide. The data will be analyzed in four stages using the qualitative analysis method of Krippendorff. DISCUSSION: In this study, we examine the state of health issues and healthcare usage among Korean firefighters and investigate their perceptions of and needs for integrative medicine. In this way, we aim to explore how integrative medicine and Korean medicine approaches could improve and assist healthcare services for firefighters. Furthermore, our findings will provide policymakers and healthcare providers with the necessary basic information to develop integrative medicine systems suited to firefighters.


Assuntos
Bombeiros , Incêndios , Traumatismos Ocupacionais , Humanos , Pesquisa Qualitativa , República da Coreia
18.
Environ Sci Technol ; 58(12): 5210-5219, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483184

RESUMO

Wildfires are a significant threat to human health, in part through degraded air quality. Prescribed burning can reduce wildfire severity but can also lead to an increase in air pollution. The complexities of fires and atmospheric processes lead to uncertainties when predicting the air quality impacts of fire and make it difficult to fully assess the costs and benefits of an expansion of prescribed fire. By modeling differences in emissions, surface conditions, and meteorology between wildfire and prescribed burns, we present a novel comparison of the air quality impacts of these fire types under specific scenarios. One wildfire and two prescribed burn scenarios were considered, with one prescribed burn scenario optimized for potential smoke exposure. We found that PM2.5 emissions were reduced by 52%, from 0.27 to 0.14 Tg, when fires burned under prescribed burn conditions, considerably reducing PM2.5 concentrations. Excess short-term mortality from PM2.5 exposure was 40 deaths for fires under wildfire conditions and 39 and 15 deaths for fires under the default and optimized prescribed burn scenarios, respectively. Our findings suggest prescribed burns, particularly when planned during conditions that minimize smoke exposure, could be a net benefit for the impacts of wildfires on air quality and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Incêndios Florestais , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , California , Incêndios , Material Particulado/análise , Fumaça/análise , Incêndios Florestais/estatística & dados numéricos
19.
Sci Total Environ ; 924: 171356, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447729

RESUMO

Recent years have seen a rise in wildfire and extreme weather activity across the globe, which is projected to keep increasing with climate-induced conditions. Air pollution, especially fine particulate matter (PM2.5) concentration, is heavily affected by PM2.5 emissions from wildfire activity. Paraguay has been historically suffering from fires, with an average of 2.3 million hectares burnt per year during the 2003-2021 period. Annual PM2.5 concentration in Paraguay is 13.2 µg/m3, more than double the recommended by the WHO. We estimate that, historically, almost 40 % of fine air particulates can be attributed to fires. Using a random forest algorithm, we estimate future fire activity and fire related PM2.5 under different climate change scenarios. With global warming, we calculate that fire activity could increase by up to 120 % by 2100. Annual fire smoke PM2.5 from fires is expected to increase by 7.7 µg/m3 by 2100. Under these conditions, Paraguay is expected to suffer an increase in 3500 deaths per year attributable to fire smoke PM2.5 by 2100. We estimate the economic cost of fire smoke-related mortality by 2100 at US $ 5600 million, equivalent to 2.6 % of Paraguay's GDP, excluding other health- and productivity-related impacts on society.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Poluentes Atmosféricos/análise , Mudança Climática , Paraguai , Material Particulado/análise
20.
MedEdPORTAL ; 20: 11383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414645

RESUMO

Introduction: Pediatric trauma has long been one of the primary contributors to pediatric mortality. There are multiple cases in the literature involving cyanide (CN) toxicity, carbon monoxide (CO) toxicity, and smoke inhalation with thermal injury, but none in combination with mechanical trauma. Methods: In this 45-minute simulation case, emergency medicine residents and fellows were asked to manage a pediatric patient with multiple life-threatening traumatic and metabolic concerns after being extracted from a van accident with a resulting fire. Providers were expected to identify and manage the patient's airway, burns, hemoperitoneum, and CO and CN toxicities. Results: Forty learners participated in this simulation, the majority of whom had little prior clinical experience managing the concepts highlighted in it. All agreed or strongly agreed that the case was relevant to their work. After participation, learner confidence in the ability to manage each of the learning objectives was high. One hundred percent of learners felt confident or very confident in managing CO toxicity and completing primary and secondary surveys, while 97% were similarly confident in identifying smoke inhalation injury, preparing for a difficult airway, and managing CN toxicity. Discussion: This case was a well-received teaching tool for the management of pediatric trauma and metabolic derangements related to fire injuries. While this specific case represents a rare clinical experience, it is within the scope of expected knowledge for emergency medicine providers and offers the opportunity to practice managing multisystem trauma.


Assuntos
Medicina de Emergência , Incêndios , Traumatismo Múltiplo , Lesão por Inalação de Fumaça , Humanos , Criança , Medicina de Emergência/educação , Lesão por Inalação de Fumaça/diagnóstico , Lesão por Inalação de Fumaça/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...